MATHEMATICS

1 Basics

1.1 Sets

Sets:	$\mathbb{A},\mathbb{B},\ldots,\mathbb{U},\ldots$		
Elements:	$a\in \mathbb{A}$	(element a belongs to the set \mathbb{A})	
	$\mathbf{b}\notin \mathbf{A}$	(element b does not belong to the set \mathbb{A})	
Empty set:	$\mathbb{A}=\{\}=\varnothing$	(set A contains no element)	
Subset:	$\mathbb{A}\subset\mathbb{B}$	(all elements of \mathbbm{A} belong to $\mathbbm{B})$	
Intersection:	$\mathbb{A} \cap \mathbb{B} := \{ x x \in \mathbb{A} \text{ and } x \in \mathbb{B} \}$		
Union:	$\mathbb{A} \cup \mathbb{B} := \{ x x \in \mathbb{A} \text{ or } x \in \mathbb{B} \}$		
Symmetric difference:	$\mathbb{A} \triangle \mathbb{B} := \{ x \text{either} x \in \mathbb{A} \text{ or } x \in \mathbb{B} \}$		
Difference:	$\mathbb{A} \setminus \mathbb{B} := \{ x x \in \mathbb{A} \text{ and } x \notin \mathbb{B} \}$		
Complement: (in universe \mathbb{U})	$\overline{\mathbb{A}}:=\mathbb{U}\setminus\mathbb{A}=$	$\{x \in \mathbb{U} x \notin \mathbb{A}\}$	

1.2 Number sets

1.3 Arithmetic

Commutative law:	a+b=b+a	$a \cdot b = b \cdot a$
Associative law:	(a+b) + c = a + (b+c)	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$
Distributive law:	$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$	$(a\pm b)\cdot c = a\cdot c\pm b\cdot c$
		$(a \pm b) : c = a : c \pm b : c$

Absolute value of a number:	$ a := \langle$	$\int a$,	$\text{if } a \geq 0 \\$
		-a,	if a < 0